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Bias-dependent D’yakonov-Perel’ spin relaxation in bilayer graphene
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We calculate the spin relaxation time of mobile electrons due to spin precession between random impurity
scattering (D’yakonov-Perel’ mechanism) in electrically gated bilayer graphene analytically and numerically.
Due to the trigonal warping of the band structure, the spin relaxation time exhibits an interesting nonmonotonic
behavior as a function of both the Fermi energy and the interlayer bias potential. Our results are in good agreement
with recent four-probe measurements of the spin relaxation time in bilayer graphene and indicate the possibility
of an electrically switched spin device.
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I. INTRODUCTION

Many fascinating properties of electrons in graphene have
been brought to light since its discovery, such as their high
electron mobility and the emergence of anomalous integer
quantum Hall plateaus.1–3 One of the less studied but important
questions is the capability of graphene to store and transport
electron spin. Compared with semiconductors such as Si or the
III-V compounds, graphene bears superior traits for long spin
coherence: Its low density of nuclear spins reduces hyperfine
interactions that are limiting spin coherence in GaAs, while
its low atomic weight implies intrinsically weak spin-orbit
interaction (SOI), thus allowing for slow spin relaxation.4

Graphene spin valve devices have been demonstrated soon
after the discovery of graphene,5 followed by four-probe
spin transport experiments using ferromagnetic cobalt6 and
permalloy7 electrodes. From Hanle precession measurements,
spin relaxation times on the order of 150 ps were found, and
by simultaneously modifying the mobility and spin relaxation
time by tuning the Fermi energy with an external gate, a
behavior of the spin relaxation time consistent with an Elliot-
Yafet-type mechanism was identified.6 Subsequent experi-
ments appear to have confirmed this for single-layer graphene,8

but D’yakonov-Perel’-type behavior in combination with spin
relaxation times up to a few nanoseconds at 4 K were found
in bilayer graphene.8,9 Following these experiments both the
Elliot-Yafett and the D’yakonov-Perel’ mechanism have been
theoretically investigated in single-layer graphene.10–13 We are
not aware of any theoretical publications specific to bilayer
graphene.

Motivated by the observations in Refs. 8 and 9, we calculate
the spin relaxation rate for bilayer graphene according to
the D’yakonov-Perel’ mechanism. Our starting point is the
band Hamiltonian of AB-stacked bilayer graphene (BLG) for
momenta h̄k = h̄(kx,ky) near the Dirac points K (τ = 1) and
K ′ (τ = −1),14

HBLG =

⎛
⎜⎜⎝

U
2 τv3p

∗ τvF p 0
τv3p −U

2 0 τvF p

τvF p∗ 0 U
2 γ1

0 τvF p∗ γ1 −U
2

⎞
⎟⎟⎠ , (1)

in the basis A1, B2, B1, A2, where A1 refers to the A
sublattice in the upper layer, B2 to the B sublattice in the
lower layer, etc., and where p = h̄(kx + iτky) = h̄keiτφ with
φ = arctan(ky/kx). Here, the intralayer hopping parameter

γ0 = 2.8 eV determines the Fermi velocity vF = 3
2aγ0/h̄ =

8.0 × 105 m/s, whereas the interlayer hopping parameter
γ1 = 0.39 eV gives rise to a strong coupling of the two
stacked lattice sites B1 and A2. Skew interlayer hopping with
strength γ3 = 0.315 eV introduces an additional velocity v3 =
3
2aγ3/h̄ = 5.9 × 104 m/s and causes a significant trigonal
warping of the energy dispersion. A tunable energy offset U

between the two layers can be achieved by applying a bias
voltage and leads to the opening of a band gap, which has
been observed to reach up to 250 meV.15 For what follows,
it is important to note that the interlayer bias also breaks
inversion symmetry, and therefore, in combination with the
intrinsic SOI, can lead to a spin splitting.

The SOI in bilayer graphene is still a topic of on-
going theoretical discussion.16,17 The Hamiltonian of the
intrinsic SOI consistent with the crystal symmetry is found
to be16 HSO = λ1τσzsz + λ2τμzsz + λ3μz(σysx − τσxsy) +
λ4σz(μysx + τμxsy), where μi , σi , and si are Pauli matrices
denoting layer, sublattice, and electron spin, respectively. The
last SOI parameter which is estimated to be λ4 = 0.48 meV
dominates the other terms, with λ1 = 14 μeV, λ2 = 8 μeV,
and λ3 = 5.5 μeV. Both the λ1 and the λ2 terms are diagonal in
spin, pseudospin, and layer, leading to out-of-plane low-energy
effective spin-orbit fields which do not efficiently couple to
momentum scattering as is needed for D’yakonov-Perel’-type
spin relaxation. The remaining two terms give rise to in-plane
spin-orbit fields which change their direction depending on
the angle of the electron’s momentum. However, not only
was λ3 found to be much smaller than λ4 in Ref. 16, but in
comparison with a λ4-type spin-orbit interaction the magnitude
of its corresponding spin-orbit field at low Fermi energies EF is
further suppressed by EF /γ1. Below, we focus on the λ4 term;
for a discussion on the remaining terms of HSO, including
the corresponding expressions for the spin-orbit fields, see
Appendix A.

II. EFFECTIVE SPIN-ORBIT FIELD

In the presence of SOI and for U �= 0, the four spin-
degenerate bands described by HBLG split up into eight bands.
Half of those bands are split off from the Dirac points by
γ1 and are not directly involved in spin transport when the
Fermi energy is in the vicinity of the Dirac point. Among
the remaining four low-energy bands, two correspond to
electron and two to hole states, each with their split spin
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degeneracy. To obtain the spin-orbit field for electrons (holes),
we focus on positive (negative) Fermi energies, where spin
currents are carried by the electrons (holes). In order to derive
an effective model for the low-energy bands, we perform
a Schrieffer-Wolff transformation on the total Hamiltonian
H = HBLG ⊗ 1S + HSO, restricting ourselves to the dominant
λ4 term for the rest of the discussion (see Appendix A for a
more general discussion). For this purpose, we divide up the
total Hamiltonian into low- and high-energy parts (separated
by γ1), and the interactions V that couple them, H = H0 + V ,
where H0 corresponds to HBLG without intralayer hopping
(vF = 0), while V contains both intralayer hopping and SOI
and can be expressed in the basis A1,↑, A1,↓, B2,↑, B2,↓, B1,↑,
B1,↓, A2,↑, A2,↓ as V = ( 0 v†

v 0 ) with

v =

⎛
⎜⎝

τp∗vF 0 0 2iλ4δτ,1

0 τvF p∗ 2iλ4δτ,−1 0
0 2iλ4δτ,−1 τvF p 0

2iλ4δτ,1 0 0 τvF p

⎞
⎟⎠ , (2)

where δτ,±1 = (1 ± τ )/2.
We now perform the Schrieffer-Wolff transformation H̃ =

eSHe−S � H0 + 1
2 [S,V ] where the anti-Hermitian matrix S =

−S† is determined by the condition V + [S,H0] = 0, and
where corrections of order (|p|vF /γ1)3 and (λ4/γ1)2 have
been neglected. The spin-independent part H̃ 0 obtained from
H̃ by setting λi = 0 for i = 1, . . . ,4 reproduces the known
form of the low-energy bands,14 E0

± = ±[U 2

4 (1 − 2κ2)2 +
γ 2

1 κ2(κ2 + v2
3

v2
F

− 2τκ v3
vF

cos(3φ))]1/2, where κ = h̄kvF /γ1 and
the (unnormalized) eigenstates

ψ
↑↓
± =

( |E0
±| ± U (1 − 2κ2)

γ1(2κ2 − τκ(v3/vF )e3iφ)

)
⊗

{|↑〉
|↓〉 , (3)

in the absence of SOI. The spin-dependent part Hλ = H̃ − H̃ 0

can be expressed in the eigenbasis Eq. (3) of H̃ 0,

Hλ =
(

Hλ
e 



† Hλ
h

)
=

(
h̄
2�+ · s 



† h̄
2�− · s

)
, (4)

with the electron (hole) effective spin-orbit field

�± = 2λ4Uκ

h̄E0±

⎡
⎣(1−κ2)

⎛
⎝ sin φ

− cos φ

0

⎞
⎠ + τκ

v3

vF

⎛
⎝sin 2φ

cos 2φ

0

⎞
⎠
⎤
⎦. (5)

The spin-orbit field and splitting are shown in Fig. 1 for
two different values of the bias voltage, U = 0.1 eV and
U = 0.01 eV. For λ4 
 U , the SOI-induced electron-hole
coupling 
 can be neglected, which is confirmed by our
numerical analysis [see Fig. 1(b)].

III. SPIN RELAXATION RATE

As our next step, we derive the in- and out-of-plane spin
relaxation times originating from the presence of �k ≡ �+(k)
via the D’yakonov-Perel’ mechanism. For concreteness, we
restrict ourselves to electrons. Spin transport is modeled using
a kinetic spin Bloch equation (KSBE), i.e., a semiclassical rate
equation for the spin distribution sk carried by an ensemble of
band electrons, an approach well known from semiconductor
spintronics (see, e.g., Ref. 18). In the absence of external
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FIG. 1. (Color online) (a) Spin-orbit field �+(k) of electrons in
bilayer graphene. (b) Spin splitting 
E where circles/diamonds refer
to the energy difference between the two electron-like low-energy
bands 
E = |E+,1 − E+,2| obtained from a numerical diagonaliza-
tion of the full Hamiltonian including λ4-like SOI and lines to the
splitting of the spin-orbit field 
E = h̄|�+(k)|/2 given by Eq. (5).

forces,

∂sk

∂t
− �k × sk + ∂sk

∂r
· vk =

∫
d2k′

(2π )2
(Wk′,ksk′ − Wk,k′sk).

(6)

For the purpose of extracting the spin coherence times, it
suffices to consider the simplified scenario of a homogeneous
spin distribution. Furthermore, we restrict our calculation to
elastic, i.e., energy conserving, scattering, and focus on the
spin of the charge carriers at the Fermi surface, which essen-
tially corresponds to a zero-temperature estimate. We consider
Fermi energies EF much smaller than energy separation of
the split-off bands, but larger than the |k| = 0 offset of the
low-energy bands, i.e., γ1 � EF > U/2. In this case there is
a single connected Fermi surface near each of the two valleys
K and K ′ and we can employ our effective low-energy theory
with the spin-orbit field Eq. (5).

At low energies, the energy bands experience a non-
negligible anisotropy due to the trigonal warping introduced
by the interlayer velocity v3, which substantially complicates
solving the KSBE. However, the corresponding effect on spin
relaxation is in most cases relatively small, which allows us to
begin with a v3 = 0 estimate, subsequently include v3 to first
order, and finally compare our analytical results to a numerical
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calculation taking trigonal warping fully into account. A
description of the last two steps as well as a discussion of
the different results can be found in Appendices B–D. Here
we only discuss the v3 = 0 estimate. Deviations from this
result are comparably small and occur predominantly where
the Fermi energy is low and very close to U/2.

In the isotropic limit v3 = 0, the spin-orbit fields �±(k)
given for electrons in Eq. (5) and the band energies E0

± simplify
considerably. In particular, the magnitude of the spin-orbit
field becomes isotropic in this case, |�±(k)| = 
±(k), and
is therefore constant if we consider electrons at the Fermi
level |p| = pF = h̄kF . Moreover, in this limit the spin-orbit
field becomes independent of the valley. We can thus simply
parametrize the spin distribution in both valleys by the same
angle φ. In other words, it (formally) does not matter if the
quasiparticle carrying the spin is located at K or K ′. For elastic
and symmetric scattering the scattering rates in Eq. (6) are
of the form Wk,k′ = Wk′,k = W (φ − φ′)2πh̄vF δ(Ek − Ek′). In
the isotropic limit the collision integral only needs to be taken
over a circle of radius |k| = kF and the KSBE given by Eq. (6)
reduces to

∂sk

∂t
− �k × sk = −

∫ 2π

0

dφ′

2π
W (φ − φ′)(sk − sk′). (7)

In order to solve Eq. (7) we first decompose the spin
distribution function into an average s0 over the Fermi surface,
which is independent of the angle φ, and the remaining
deviation 
sk, describing the angular dependence,

sk = s0 + 
sk, s0 ≡ 〈sk〉 ≡
∫ 2π

0

dφ

2π
sk, (8)

where 〈
sk〉 = 0. Note that the experimentally observed spin
relaxation refers to the decay of the total spin of the charge
carriers at the Fermi surface, which is in turn given by the
average spin polarization s0. To obtain the time dependence of
s0 we substitute Eq. (8) into the KSBE (7) and take the average
over the angle φ,

∂s0

∂t
= 〈�k × 
sk〉. (9)

Note that both the spin-orbit field and the collision integral
average to zero. The corresponding equation for the anisotropic
part is

∂
sk

∂t
= �k × s0 −

∫ 2π

0

dφ′

2π
W (φ − φ′)(
sk − 
sk′)

+�k × 
sk − 〈�k × 
sk〉. (10)

The two coupled differential equations (9) and (10) can be
solved approximately in the strong scattering limit |�k|τp 

1, where τp denotes the momentum relaxation time. In this
limit the combination of fast momentum scattering and slow
spin precession implies that the deviation 
sk reaches a
quasistationary state 
sst

k when ∂
sk/∂t ≈ 0, which is then
followed by a slow decay of the isotropic spin polarization
s0.18 Since momentum relaxation is usually very fast on the
time scale of the observation length, 
tobs � τp, the observed
dynamics of the spin polarization s0 is effectively the averaged
quantity sobs

0 (t) = ∫ t+
tobs/2
t−
tobs/2 s0(t ′)dt ′. We can therefore neglect

fast fluctuations occurring on the time scale τp as long as they

are uncorrelated for times much longer than τp. It can be shown
that the last two terms of Eq. (10) only give rise to fluctuations
of the spin distribution, which are uncorrelated on a time scale
�τp. Neglecting the last two terms of Eq. (10) the steady state
condition becomes

�k × s0 =
∫ 2π

0

dφ′

2π
W (φ − φ′)

(

sst

k − 
sst
k′
)

. (11)

This equation can be solved using the following ansatz,


sst
k = τ ∗[�k × s0], (12)

where we still need to determine the time τ ∗. After substituting
Eq. (12) into Eq. (11), the integral can be treated by expanding
the scattering rates W (φ − φ′) in polar harmonics. We find that
Eq. (11) has the solution

1

τ ∗ =
∫ 2π

0

dθ

2π
W (θ )(1 − cos θ ), (13)

and therefore τ ∗ can be identified with the momentum
relaxation time, τ ∗ = τp. Having solved Eq. (11), we substitute
the steady state solution Eq. (12) with Eq. (13) into the equation
of motion of the total spin polarization s0, Eq. (9), and find an
exponential decay law,

∂sst
0

∂t
=

⎛
⎝ 1/τS 0 0

0 1/τS 0
0 0 2/τS

⎞
⎠ sst

0 , (14)

with the longitudinal spin-decoherence time

1

τS

≡ 1

τS,‖
= 2λ2

4

h̄2

U 2

E2
F

κ2
F

(
1 − κ2

F

)2
τp, (15)

where

κ2
F = p2

F v2
F

γ 2
1

=
U 2 +

√
4E2

F

(
U 2 + γ 2

1

) − U 2γ 2
1

2
(
U 2 + γ 2

1

) (16)

is found by solving EF = E0
+|v3=0. The transverse spin

relaxation time is simply τS,⊥ = τS,‖/2. Combining Eqs. (15)
and (16), we obtain the spin relaxation time as a function of the
Fermi energy EF and the bias voltage U . As shown in Fig. 2,
the spin relaxation time is very sensitive to both EF and U .
For a constant U and sufficiently large EF the spin relaxation
time increases as a function of EF and can be approximated
by19

1

τ 0
S,‖

= 1

2τ 0
S,⊥

≈ 2λ2
4

h̄2

(γ1 − EF )2U 2

EF γ 3
1

τp. (17)

The typical D’yakonov-Perel’ relation 1/τS ∝ τp has al-
ready been observed in two different experiments.8,9 As
pointed out in the previous discussion, the calculated relaxation
rates are very sensitive to a number of parameters: the Fermi
energy EF , the bias voltage U , and the SOI strength λ4.
Unfortunately, these are not easily accessible experimentally.
Thus, we will have to rely on some rough estimates in order
to compare the experimental values of τS with the obtained
theoretical results.
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FIG. 2. (Color online) In-plane spin relaxation time τS,‖ in bilayer
graphene with λ4-type SOI in the isotropic limit (v3 = 0), (a) as
a function of the Fermi energy EF for different bias voltages U ,
and (b) as a function of the bias voltage U at a constant Fermi
energy EF = 0.06 eV. In both plots the momentum relaxation time is
chosen to be τp = 10−13 s. Dashed lines correspond to the large Fermi
energy approximation given in Eq. (17). Note that we choose the
Fermi energy to be larger than the k = 0 bias offset E(k = 0) = U/2,
thus lines start at different Fermi energies for different values of the
bias U .

IV. COMPARISON WITH EXPERIMENT

In Ref. 9, the spin relaxation time has been measured
for for a range of mobilities from 300 to 2000 cm2/V s at
room temperature and a range from 700 to 3800 cm2/V s at
5 K, both at a fixed carrier density ne = 1.5 × 1012 cm−2. We
can roughly estimate the Fermi energy using the parabolic
approximation E(k) ≈ h̄2k2/2m∗, where m∗ = γ1/2v2

F is the
effective mass.14 Integrating the density of states D(E), which
is constant within this approximation, one obtains a carrier
density of ne = m∗EF /πh̄2. The estimated Fermi energy for
the experimental carrier density ne = 1.5 × 1012 cm−2 is
EF = 67 meV. Again, in the effective mass approximation
we can estimate the momentum relaxation time from τp =
m∗μ/e.9,20 Assuming that the bias offset U/2 at k = 0 is
well below the Fermi energy (which is also necessary for
the parabolic approximation) we can use the approximate spin
relaxation rate given by Eq. (17),

1

τ 0
S,‖

≈ 2λ2
4

h̄2

(γ1 − EF )2U 2

EF γ 3
1

τp

τp≈m∗μ/e≈ λ2
4

h̄2

(γ1 − EF )2U 2

evF EF γ 2
1

μ.

(18)

The experimental results show a reasonable agreement with
the model estimate for a bias voltage of 50 meV. The corre-
sponding model prediction Eq. (18) is τS ≈ 0.5 ns 1000 cm2/V s

μ
.

At 5 K the bias voltage of 50 meV is significantly
larger than the thermal energy (kBT ≈ 0.5 meV) and the
Fermi energy of 67 meV is reasonably well above U/2.
At room temperature (kBT ≈ 25 meV) the thermal energy
is comparable with both, thus making the zero-temperature
estimate very approximate. Interestingly, the experimental data
shows a stronger correlation τS ∝ 1/μ at room temperature.

V. CONCLUSIONS

In conclusion, we have calculated the spin relaxation time
in bilayer graphene in dependence of the Fermi energy and
interlayer bias potential. These two parameters can be tuned in-
dependently with top and back gates. Using experimentally de-
termined parameters and making reasonable assumptions for
the unknown values of U and EF , we obtain good agreement
with the existing experiments. We find a strong dependence of
the spin relaxation time on externally applied fields that may
have applications in field-controlled spin valve devices.
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APPENDIX A: ADDITIONAL SPIN-ORBIT FIELDS

In the main text we have focused on λ4-type SOI and derived
the corresponding spin-orbit field. Analogous spin-orbit fields
can however be derived for the omitted terms of HSO, i.e., λ1-,
λ2-, and λ3-type SOI. In lowest order of the spin-orbit coupling
constants we can consider each of the above spin-orbit terms
separately. For each term we can derive an analytic expression
of the respective spin-orbit field using the same recipe as in the
case of λ4-type SOI. In order to compute �λi

(for i = 1,2,3) we
start with H = HBLG ⊗ 1S + HSO �λj =0 forj �=i , i.e., we omit all
terms in HSO except for the one involving λi . Via a Schrieffer-
Wolff transformation we separate high- and low-energy bands
arriving at a effective low-energy Hamiltonian H̃ , where
we again neglect terms of order (pvF /γ1)3 or (λi/γ1)2 and
higher. The resulting effective Hamiltonian H̃ can be split
into a kinetic and a spin-dependent part. In all three cases we
recover the same spin-independent part part H̃ 0 as previously
for λ4. The remaining spin-dependent part Hλ = H̃ − H̃ 0 is
subsequently rotated into the eigenbasis of H̃ 0 as given by Eq.
(3). For a sufficiently a large bias (U � λi), the electron-hole
coupling 
 can be dropped. Form the remaining 2 × 2 blocks
H

λi

e/h we obtain the respective spin-orbit field �
λi± .

Below we report the resulting expressions for the approxi-
mate spin-orbit fields:

�
λ1± = 2λ1

h̄

U

E0±

[
1

2
− κ2

(
1 − 2κ2 + 2τκ

v3

vF

)] ⎛
⎝ 0

0
1

⎞
⎠ , (A1)

�
λ2± = 2λ2

h̄

U

E0±

[
1

2
− 2κ2(1 − 2κ2)

] ⎛
⎝ 0

0
1

⎞
⎠ , (A2)
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�
λ3± = ±2λ3

h̄

U

γ1
2κ

⎛
⎝ sin φ

cos φ

0

⎞
⎠ . (A3)

Note that both �
λ1± and �

λ2± are out-of-plane effective magnetic
fields, which in the isotropic limit (v3 = 0) are independent of
the electron momentum. Similar to �

λ4± , �
λ3± is an in-plane

effective field, which changes its direction depending on the
angle of the electrons momentum φ. In contrast to �

λ4± it
is however not proportional to U/E0

±, but instead to U/γ1.
In other words, |�λ3± |/|�λ4± | ∝ (λ3/λ4)(E0

±/γ1), which in the

range of the low-energy theory makes it small even if λ3 and
λ4 were comparable.

APPENDIX B: SPIN RELAXATION—A FIRST-ORDER
ESTIMATE INCLUDING TRIGONAL WARPING

In the analytic derivation of the in- and out-of-plane spin
relaxation rates given in the main text we have neglected
the anisotropy of the band structure. In the case of a finite
trigonal warping (v3 �= 0) the length of the Fermi wave vector
is no longer constant on the Fermi surface. Moreover, the
density of states at the Fermi level is no longer constant.
Solving the general scattering integral, which previously used
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FIG. 3. (Color online) In-plane spin relaxation in bilayer graphene with λ4-type SOI. The plots show a comparison of the numerical data
(diamonds) and the zeroth- (orange dashed) and first- (continuous purple lines) order estimates, τ 0

S,‖ (15) and τ 1
S,‖ (B6), for different values

of the interlayer bias U and the Fermi energy EF . All curves are calculated in the limit of a 
 R 
 1/kF , using a mean scattering time
τsc = τp = 0.1 ps. The insets show the trigonal warping of the Fermi surfaces. The corresponding spin relaxation times are listed in Table I.
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to be a simple integral over the angle, now becomes a more
complicated task. In order to obtain a first estimate of the
effect of trigonal warping on the spin relaxation time we
instead choose a much simpler approach. Namely, we use
the (momentum) relaxation time approximation of the KSBE.
Here the scattering integral is replaced by a single parameter,
the momentum relaxation time:

∂sk

∂t
− �k × sk = −τp(sk − 〈sk〉), (B1)

where 〈·〉 denotes the average over the Fermi surface and
E(k) = EF , as we assume elastic scattering and only consider
electrons at the Fermi level. Although we may not be
able to calculate the average 〈·〉 analytically, we can use a
seminumerical approach. Therefore, we again decompose the
spin distribution function into its average and its k-dependent
deviation:

sk = 〈sk〉 + 
sk. (B2)

Neglecting the fluctuation term �k × 
sk − 〈�k × 
sk〉, the
kinetic spin Bloch equation simplifies to

∂〈sk〉
∂t

= 〈�k × 
sk〉 (B3)

and

∂
sk

∂t
= �k × 〈sk〉 − τp
sk. (B4)

The steady-state solution of the k-dependent part is readily
given by 
s st

k ≡ τp(�k × 〈sk〉). For the corresponding time
evolution of the average spin we find

∂〈sk〉st

∂t
= −τp

〈

2

k〈sk〉st − (�k · 〈sk〉st)�k
〉
. (B5)

The part of the right hand side that is proportional to 〈sk〉st

leads to the first-order estimate of the spin relaxation time
including trigonal warping,

1

τ 1
S,i

= −τp

〈

2

k − 
2
k,i

〉
for i = x,y,z. (B6)

Since the out-of-plane component 
k,z simply vanishes and
the two in-plane components are of the same average amplitude
in both valleys, we can immediately recover that there is still
only two different spin relaxation times (τ 1

S,‖ and τ 1
S,⊥).

In order to numerically calculate Eq. (B6), we need to
explicitly calculate the average over the Fermi surface. In the
case of γ1 � EF > U/2 this can be achieved by a numerical
inversion of the low-energy dispersion relation. Inverting
E0

+(k,φ) at a discrete number of angles and using a standard
interpolating function, we obtain kF (φ), i.e., the amplitude of
the Fermi vector as a function of its angle. The average over
the Fermi surface can be expressed in terms of a single integral
over the angle:

〈f (k,φ)〉 = 1

Z

∫ 2π

0
dφ D(φ)f [kF (φ),φ], (B7)

where

D(φ)

= 1

2π2

√
[kF (φ)]2+[∂φkF (φ)]2√[

∂kE
0
eff(k,φ) �k=kF (φ)

]2+[
1
k
∂φE0

eff(k,φ) �k=kF (φ)
]2

(B8)

is the respective density of states and Z = 〈D(φ)〉. The
above density of states along the anisotropic Fermi surface
can be derived form a coordinate transformation into local
coordinates k‖ and k⊥, pointing along and perpendicular to the
Fermi surface.

APPENDIX C: A NUMERICAL MODEL
OF SPIN RELAXATION

To check the approximations we have employed when
solving the KSBE, we also consider a simple numerical
model that simulates the concept of the D’yakonov-Perel’
mechanism. We therefore sample the spin evolution of an
ensemble of electrons at the Fermi level. The diffusive (real
space) motion of the ensemble is modeled by a random k-space
walk of each electron. A homogeneous (or averaged) spin-
orbit interaction is represented by a k-dependent spin-orbit
field �k, which in turn acts on the spin of each electron.
Following the semiclassical approximation we assign each
electronlike quasiparticle a wave vector k (relative to one of
the Dirac points) and a spin S. Their dynamics are governed
by semiclassical equations of motion, i.e., in the absence of
external forces, unless the electron is being scattered, k is
simply constant and S evolves according to ∂S/∂t = �k × S.

Momentum scattering on the other hand is modeled by a
homogeneous scattering rate W (k,k′), representing the rate at
which electrons in state k scatter into the state k′. Scattering is
assumed to be elastic and spin conserving. For a simple model
we consider scatterers to be represented by Gaussian model
potentials of width R, i.e., V (r) ≡ V0 exp(−r2/2R2). Here we
study small scatterers, where the spread of the potential is
still larger than the lattice constant, but much smaller than
the inverse of the wave vector amplitude: a 
 R 
 1/k. In
this limit the explicit |k| dependence can be neglected and the
scattering cross section simplifies to dσ/dθ ∝ cos2 θ , where
θ is the scattering angle. The remaining dependence cos2 θ is
the signature of the Berry phase of the quasiparticles. Note
that R 
 1/k, where k 
 K , also implies that intervalley

TABLE I. In-plane spin relaxation time in bilayer graphene with
λ4-type SOI for different bias voltages U and Fermi energies EF . The
table is a comparison of the zeroth- and first-order estimates, τ 0

S,‖ (15)
and τ 1

S,‖ (B6), with the best-fit values for the numerical data shown in
Fig. 3.

U (meV) EF (meV) τ0 (ns) τ1 (ns) τfit (ns)

10 5.1 3.36 2.46 1.99
25.1 4.26 4.25 4.20
50.1 9.69 9.78 9.80

50 25.1 0.547 0.623 0.612
50.1 0.409 0.413 0.407

100 50.1 0.171 0.188 0.190
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scattering can be neglected. According to Fermi’s golden
rule the scattering rate form k to k′ is proportional to the
density of states at the outgoing momentum h̄k′. If we again
focus on Fermi energies sufficiently larger than the k = 0 bias
offset U/2, each electron wave vector k can be parametrized
by its angle φ, where |k| = kF (φ) (see previous section).
This suggests the following expression for the scattering rate
for small scatterers in bilayer graphene with finite trigonal
warping,

W (φ,φ′) ≡ 1

τsc

1

Z
cos2(φ − φ′)D(φ′), (C1)

where Z = ∫
dφ′dφ cos2(φ − φ′)D(φ′) is the normalization,

1/τsc the total scattering rate, and D(φ′) the angular dependent
density of states as given by Eq. (B8). All of the numerical
results presented in Fig. 3 are calculated using this approxi-
mation. Note that in the isotropic limit D(φ′) = const implies
that the momentum relaxation time τp [see Eq. (13)] equals
the mean scattering time τsc.

APPENDIX D: FERMI ENERGY AND BIAS VOLTAGE
DEPENDENCE—A COMPARISON WITH NUMERICS

Figure 3 shows the numerical spin relaxation in comparison
with the two estimates for a range of bias voltages from 10 to
100 meV and different Fermi energies. As previously noted,

all Fermi energies are chosen to be larger than the k = 0
offset given by the bias voltage (EF > U/2). The calculated
examples demonstrate an excellent agreement between the
numerical data and the above first-order estimate τ 1

S,‖ (B6)
for all [Figs. 3(b)–3(f)] but the first example [Fig. 3(a)]. In
these cases even the zeroth-order estimate τ 0

S,‖, where τp = τsc,
is in comparably good agreement with the numerical data.
Noteworthy deviations only occur in Figs. 3(d) and 3(f),
where the Fermi energy is very close to the voltage offset
(EF � U/2 + 0.1 meV). As shown in the corresponding
insets these are exactly the cases where trigonal warping is
most pronounced. Figure 3(a) is the only example where
both τ 0

S,‖ and τ 1
S,‖ deviate significantly from the numerical

results. However, taking into account the extreme trigonal
warping, both still provide a good order of magnitude estimate.
Overall, the numerical data supports the sensitive dependence
of the spin relaxation time on bias voltage and Fermi energy
shown in Fig. 2. Notice that there is roughly two orders
of magnitude difference between the spin relaxation times
for U = 10 meV and U = 100 meV at EF = 50.1 meV (see
Table I).

Though not explicitly shown here, the numerical calcula-
tions indicate the same anisotropy factor of 2 between the
relaxation times of the in- and out-of-plane spin polariza-
tion, which we derived analytically in the isotropic limit
v3 = 0.
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